
The wire protocol
Heikki Linnakangas

- Current protocol is called “protocol version 3”
- Protocol version 3 was introduced in server version 7.4
- Version 2 support was dropped in server version 14

History

Message structure

- All communication is through a stream of messages.
- The first byte of a message identifies the message type, and the next four

bytes specify the length of the rest of the message (this length count includes
itself, but not the message-type byte).

- The remaining contents of the message are determined by the message type.

Q 12 SELECT 1

Message type
(1 byte)

Message length
(4 bytes)

Message content
(depends on the
message type)

Opening a connection

Handshake

Client sends the first message after opening the TCP connection

Can be one of:

- The “startup packet”
- SSLRequest
- GSS encryption request
- Query cancel packet
- TLS hello (since version 17)

The TLS handshake

- Client sends magic 4 bytes forming an SSLRequest
- Server responds with ‘Y’ or ‘N’
- If ‘Y’, the client then proceeds with TLS handshake
- If ‘N’, the client can continue without encryption, or hang up

- Starting with v17, the client can also start the TLS handshake immediately,
without the SSLRequest. If the server does not support TLS, it will close the
connection.

The startup packet

- After establishing TLS (if wanted), the client sends so-called startup packet
- The startup packet contains:

- Protocol version
- List of supported protocol extensions
- Database name
- User name
- Optional settings that will be set to GUCs after startup
- Typically, application_name

Authentication

The authentication consists of a number of challenge-response messages

The server sends one of the Authentication request messages, and the client responds:

- AuthenticationCleartextPassword
- AuthenticationMD5Password
- AuthenticationSASL, AuthenticationSASLContinue,

AuthenticationSASLFinal (for SCRAM)
- AuthenticationKerberosV5
- AuthenticationGSS, AuthenticationGSSContinue
- AuthenticationSSPI

Once authentication is accepted, the server sends an AuthenticationOK message

Simplest possible handshake

Client Server
-> Startup packet

<- AuthenticationOK

Protocol negotiation

- If the server does not support the minor protocol version requested by the
client, it sends a NegotiateProtocol message with the highest version
that it does support.

- The client can choose to continue with that version, or hang up
- The same applies to any protocol extensions that the server does not support

More complicated case

Client Server

-> GSSRequst
<- ‘N’

-> SSLRequest
<- ‘Y’

-> TLS ClientHello
<- TLS ServerHello

-> TLS ChangeCipherSet
<- TLS ChangeCipherSet

-> Startup packet
<- NegotiateProtocol
<- AuthenticationSASL

-> SASLInitialResponse
<- AuthenticationSASLContinue

-> SASLResponse
<- AuthenticationSASLComplete
<- AuthenticationOK

Almost there..

After authentication, the server will send:

- BackendKeyData : this contains the “query cancellation key” that will be needed to perform query
cancellation later. The client saves it somewhere

- ParameterStatus : Report current values of certain GUCs
- ReadyForQuery

Connection has now been established

- The server enters the normal query handling loop
- The client can now start sending queries

Running queries

Running queries

Two ways:

A) Simple query protocol
- Supports “multi-statements”, i.e “SELECT ‘foo’; SELECT ‘bar’”

B) Extended query protocol
- Query parameters, prepared statements, cursors

Simple query protocol

Client Server
-> Q SELECT * FROM table

<- RowDescription
<- DataRow
<- DataRow
<- CommandCompletion: SELECT 2
<- ReadyForQuery

Extended query protocol

Client Server
-> Parse SELECT * FROM tbl WHERE id = $1
-> Bind 1234
-> Describe
-> Execute

<- RowDescription
<- DataRow
<- DataRow
<- CommandCompletion: SELECT 2
<- ReadyForQuery

Parse

- The Parse message comes in two variants:
- unnamed variant
- named variant

- The unnamed variant is used for executing one-off queries
- The named variant creates a prepared statement that can be reused

- These can also be created with at SQL level with the PREPARE statement

Bind

- The Bind message includes:
- the prepared statement name (or empty string for the unnamed prepared statement)
- Destination portal name (or empty string for the unnamed portal)
- values for any query parameters
- Whether to use binary or text format for each result column

- Creates a named portal, aka. Cursor
- This shares the namespace with cursors declared at SQL level with DECLARE CURSOR and

with cursors created e.g. in pl/pgsql functions
- unnamed portal should used for one-off executions

Describe

Comes in two variants:

- Portal Describe
- Statement Describe

- The server will respond with a RowDescription message, with information
about the columns and datatypes in the result set

- In statement variant, the server also sends a ParameterDescription message,
with information about the query parameters

Execute

- Runs the portal, returns rows
- Can include a max. row count

- You can fetch more by sending another Execute message

Synchronization

Client Server
-> Parse
-> Bind
-> Execute
-> Sync

<- DataRows
<- CommandCompletion: SELECT 2
<- ReadyForQuery

Synchronization

- After each logical statement, the client sends a Sync message
- The server will buffer responses and doesn’t send anything back until it sees

a Sync or the buffer fills up
- The server can send an ErrorMessage at any time, and the connection enters

“error mode” where any subsequent queries to fail too
- Sync closes the implicit transaction

Running multiple queries in one “logical statement”

Client Server
-> Parse SELECT ‘foo’ +Bind+Execute
-> Parse SELECT ‘bar’ +Bind+Execute
-> Sync

<- DataRows
<- CommandCompletion: SELECT 1
<- DataRows
<- CommandCompletion: SELECT 1
<- ReadyForQuery

Running multiple queries in one “logical statement”

Client Server
-> Parse SELECT ‘foo’ +Bind+Execute
-> Flush

<- DataRows
<- CommandCompletion: SELECT 1

-> Parse SELECT ‘bar’ +Bind+Execute
-> Sync

<- DataRows
<- CommandCompletion: SELECT 1
<- ReadyForQuery

COPY protocol

COPY in and COPY out modes

COPY mode is started by sending a COPY command:

COPY in, client -> server:

COPY tbl FROM STDIN

COPY out, server -> client:

COPY tbl TO STDOUT

COPY in, client -> server

Client Server
-> Q COPY mytbl FROM STDIN

<- CopyInResponse
-> CopyData
-> CopyData
-> CopyDone

<- CommandCompletion: COPY 123
<- ReadyForQuery

COPY mode

- The server responds with CopyInResponse or CopyOutResponse
- At the end, the sender sends a CopyDone or CopyFail message to exit the

copy mode
- The server can send an ErrorMessage at any time. The COPY mode still

needs to be terminated with a CopyFail message
- After CopyDone, the server responds with CommandCompletion message,

like with a normal query

CopyData messages

- CopyData messages are just a stream of data
- The content depends on the COPY format options

- Text. CSV, BINARY, DELIMITER, ESCAPE and so forth
- In COPY out mode (server -> client), each CopyData message contains one

row
- In COPY in mode (client -> server), the client is free to chunk the data as it

wishes

Replication protocol

Replication protocol

- If you use the replication option in the startup packet, you open a
replication connection instead of a regular one

- The wire protocol is the same
- Instead of SQL queries, there is a set of “replication commands” that you can

run:
- IDENTIFY_SYSTEM
- TIMELINE_HISTORY
- CREATE_REPLICATION_SLOT
- START_REPLICATION

Physical Replication protocol

- The START_REPLICATION command enters COPY both mode
- Like COPY in/out modes, but both sides can send CopyData messages
- A nested protocol inside the wire protocol, each message is send as a

CopyData message, with a nested message type header and payload

Messages include:

- XLogData
- Keepalive messages
- Hot standby feedback messages

Logical Replication protocol

- Started with the START_REPLICATION command
- Also a nested protocol using COPY mode

Messages include e.g.:

- Begin
- Insert/Update/Delete
- Commit

Cancellation

Query cancellation

If you hit CTRL-C in psql, for example, the client initiates “query cancellation”

- Query cancellation is performed by opening another TCP connection
- Instead of sending a startup packet, the client sends a CancelRequest

message, with the secret token that it got from the server when the
connection was established

- Can be TLS encrypted

So you want to build a
connection pooler?

Connection state

- Prepared statements
- Cursors
- Current transaction
- SET variables
- Caches
- Cancellation

Protocol extendability

Two mechanisms

Minor version negotiation

- Current version is 3.0. If we introduce version 3.1, client and server can fall
back to the lowest common supported version

Protocol extensions

- The startup packet can contain list of supported extensions, and can fall back
to set of extensions supported by client and server

Protocol negotiation is currently untested

- There is only one minor version, 3.0
- There are no protocol extensions

If you’re writing a pooler or server that uses the Postgres wire protocol,
please implement the protocol negotiation to be future proof!

- Add new protocol message to change GUCs to be able to
change protocol extension parameters by Jelte
Fennema-Nio

- Make query cancel keys longer by Heikki Linnakangas

Two patches in progress that will extend the protocol

https://commitfest.postgresql.org/50/4736/
https://commitfest.postgresql.org/50/4736/
https://commitfest.postgresql.org/49/4870/

Thank you!

Questions?

Tip: Wireshark has built-in support for parsing the Postgres protocol

